

SECURITY AND BIODIVERSITY OF BAKERY PRODUCTS IN A CIRCULAR FOOD SYSTEM

Evolution beyond Innovation in Circular Food Systems Rome, 22.05.2023

Innovative biotechnologies as a tool for improving sustainability of the agrifood chains

Carlo Giuseppe Rizzello

Sapienza University of Rome, Italy carlogiuseppe.rizzello@uniroma1.it

Origin and fate of the agri-food side-streams

By-products, surplus, defective/unsold/expired

Agri-food side-streams UPCYCLING

very high organic load

77 Volume **BIOPROCESSING**

Recycling and valorisation through bioprocessing

a) use as substrate for microbial growth

Recycling and valorisation through bioprocessing

b) food ingredients

Poor technological properties

Upcycling side streams into food ingredients

Development of the "strategy"

- Control plan for the side-streams supply chain
- pre-process conditions (thermal treatments, wet milling)
- selection of starter microrganisms and enzymes
- set-up of the biotechnological protocol
- optimization of the process parameters
- stabilization conditions

Agri-food side-streams

<u>fruits and</u> vegetables

<u>cereal industry</u>

dairy sector

oenological sector

post-harvest losses, unsold, peels

surplus wasted bread milling by-products brewer's spent grain

whey ricotta cheese exhausted whey

grape pomace

ain hausted

Carlo Giuseppe Rizzello Biotecnologie innovative e strategie zero-waste nelle filiere agroalimentari Simplified illustration of possible sourdough-microbe networks based on RNA data. Network diagrams are color- and symbol- coded by time of propagation and type of flour. Samples: Italian (square) and Finnish (triangle) faba bean doughs (prior to fermentation and before becoming sourdough) (Ita0 and Fi0, red colour); sourdoughs after 1 (Ita1 and Fi1, green colour), 2 (Ita2 and Fi2, blue colour), 5 (Ita5 and Fi5, pink colour), 7 (Ita7 and Fi7, orange colour) and 14 (Ita14 and Fi14, yellow colour) days of propagation.

International Journal of Food Microbiology 248 (2017) 10-21

International Journal of Food Microbiology

Sourdough-type propagation of faba bean flour: Dynamics of microbial

Rossana Coda ^a, Maryam Kianjam ^a, Erica Pontonio ^b, Michela Verni ^b, Raffaella Di Cagno ^c, Kati Katina ^a, Carlo Giuseppe Rizzello^{b,*}, Marco Gobbetti^c

^a University of Helsinki, Department of Food and Environmental Sciences, Agnes Sjioberginkatu 2, Helsinki, Finland
^b University of Bari "Aldo Moro", Department of Soil, Plant, and Food Science, Via Amendola 165/a, 70125 Bari, Italy Faculty of Food Science and Technology, University of Bozen, 39100 Bolzano, Italy

Lactic acid bacteria fermentation advantages

Nutritional

Decrease of the glycemic index, increase of the protein digestibility and mineral bioavailability

Technological

Improvement of the textural/structural features, volume and workability

Functional

Synthesis of bioactive compounds Degradation of anti-nutritional compounds

Shelf-life

Inhibition of spore-forming bacteria and molds; decrease of the staling rate Sensory Intensity and complexity of flavour and taste

- Technological issues
- Consumers' acceptability

Source of:

- Fibers
- Minerals
- Proteins
- Phenols

Antinutritional factors

- Phytic acid

How to use «non-wheat» ingredients

Technological options

1- Debranning, 2- micronization and air fractionation Food Research International 46 (2012) 304-313 Contents lists available at SciVerse ScienceDirect Durum wheat Food Research International Water journal homepage: www.elsevier.com/locate/foodres Conditioning Micronized by-products from debranned durum wheat and sourdough fermentation enhanced the nutritional, textural and sensory features of bread Carlo Giuseppe Rizzello ^a, Rossana Coda ^{a,*}, Francesco Mazzacane ^a, Davide Minervini ^b, Marco Gobbetti ^a Bran fraction 1 Debranning ^a Department of Environmental and Agro-Forestry Biology and Chemistry, University of Bari, 70125 Bari, Italy
^b Molini Tandoi Spa, 70033 Corato, Bari, Italy (BF1) level I Bran fraction 2 Debranning level 2 (BF2) Micronization and air fractionation Debranning Bran fraction 3 (BF3) level 3 Cf Ff Chemical and physical characteristics Coarse fraction Fine fractio Milling $6.7 \pm 0.2^{\text{n.s.}}$ $6.7 \pm 0.1^{n.s.}$ pН (Cf) (Ff) T'TA 13.7 ± 0.3^{b} 16.3 ± 0.1^{a} $14.0 \pm 0.1^{n.s.}$ Moisture (%) $14.0 \pm 0.3^{n.s.}$ Ash (% d.m.) 5.7 ± 0.2^{b} 7.1 ± 0.1^{a} Total dietary fiber (% d.m.) 38.2 ± 0.5^{b} 60.1 ± 0.8^{a} Starch (% d.m.) 5.1 ± 0.8^{b} 9.3 ± 0.8^{a} Fat (% d.m.) 6.5 ± 0.2^{b} 9.0 ± 0.2^{a} Protein (% d.m.) 8.0 ± 0.1^{b} 19.0 ± 0.3^{a}

Sourdough applications: pre-treatment of bran and micronized bran

Micronized by-products from debranned durum wheat and sourdough fermentation enhanced the nutritional, textural and sensory features of bread

Carlo Giuseppe Rizzello ^a, Rossana Coda ^a,*, Francesco Mazzacane ^a, Davide Minervini ^b, Marco Gobbetti ^a ^a Department of Environmental and Agro-Forestry Biology and Chemistry, University of Bari, 70125 Bari, Italy ^b Molini Tandoi Spa, 70033 Corato, Bari, Italy

Fermented bran as bread ingredient:

- -High concentration of functional compounds (phenols and dietary fibre),
- -Decrease of HI

٠

٠

٠

•

200

- -Improving of the textural properties,
- Improving of sensory characteristics.
- Increased protein bioavailability (use of xylanases) and digestibility

Panel test				
	WB	SWB	WBCf	SWBCf
Elasticity	7.5	7.8 <	6.3	7.8
Crumb color	3.8	4.5	7.3	7.6
Crust color	4.3	6.3	6.5	7.8
Acid flavor	1.8	4.8	3.0	5.0
Acid taste	1.5	5.3	2.8	5.8
Sweetness	4.7	4.7	5.7	5.0
Dryness	4.3	4.0	5.0	3.8
Taste	6.3	7.0	7.3	7.8
Salty	5.3	5.7 <	5.7	6.7

Technological options

ELSEVIER

e online at www.sciencedirect.com
ScienceDirect

Bran bioprocessing for enhanced functional properties Rossana Coda¹, Kati Katina¹ and Carlo G Rizzello²

Sourdough applications: pre-treatment of wheat germ

a-Tocopherol Vitamins B \checkmark Dietary fibre \checkmark Minerals \checkmark Proteins \checkmark ✓ Phytochemicals (flavonoids, sterols,...) ✓ Unsatured fatty acids **Antinutritional factors** Raffinose \checkmark Phytic acid \checkmark Wheat germ agglutinin

- Wheat germ-

- Technological issues
 - Storage issues
- Consumers' acceptability

	Food Chemistry 119 (2010) 1079-1089	
	Contents lists qualitable at ColonerDirect	15
	Contents lists available at Sciencebillect	FOOD
	Food Chemistry	CHEMISTRY
FISEVIER	journal homepage: www.elsevier.com/locate/foodchem	Annales
Effect of sourdo and nutritional	ough fermentation on stabilisation, and chemical characteristics of wheat germ	
Effect of sourde and nutritional Carlo Giuseppe Rizz Department of Plant Protection of	ough fermentation on stabilisation, and chemical characteristics of wheat germ zello, Luana Nionelli, Rossana Coda, Maria De Angelis, Marco Gobbetti * nd Appled Microbiolog, University of Bart, 70128 Bart, Indy	
Effect of sourde and nutritional Carlo Giuseppe Rizz Department of Plant Protection A R TICLE IN FO	Dugh fermentation on stabilisation, and chemical characteristics of wheat germ zello, Luana Nionelli, Rossana Coda, Maria De Angelis, Marco Gobbetti [*] md Appled Microbiology, University of Boxt, 70126 Boxt, Ruly A B S T R A C T	

Eur Food Res Technol (2010) 230:645-654 DOI 10.1007/s00217-009-1204-z

ORIGINAL PAPER

Use of sourdough fermented wheat germ for enhancing the nutritional, texture and sensory characteristics of the white bread

Carlo Giuseppe Rizzello · Luana Nionelli · Rossana Coda · Raffaella Di Cagno · Marco Gobbetti

Pre-fermentation of wheat germ with selected lactic acid bacteria

	Contents lists available at ScienceDirect	
	Food Chemistry	CHEMISTR
ELSEVIER	journal homepage: www.elsevier.com/locate/foodchem	- Character
Effect of sourdo and nutritional	ough fermentation on stabilisation, and chemical characteristics of wheat germ	
Effect of sourdo and nutritional	ough fermentation on stabilisation, and chemical characteristics of wheat germ zello Juana Nionelli, Rossana Coda, Maria De Angelis, Marco Cobbetti	
Effect of sourde and nutritional Carlo Giuseppe Rizz Department of Plant Protection of	ough fermentation on stabilisation, and chemical characteristics of wheat germ zello, Luana Nionelli, Rossana Coda, Maria De Angelis, Marco Gobbetti " md Applied Microbiolog, University of Burt, 70126 Burt, Indy	
Effect of sourde and nutritional Carlo Giuseppe Rizz Department of Plant Protection of ARTICLE INFO	pugh fermentation on stabilisation, and chemical characteristics of wheat germ zello, Luana Nionelli, Rossana Coda, Maria De Angelis, Marco Gobbetti* md Appled Microbiolog, University of Burl, 70126 Burl, Indy A B S T R A C T	

SFWG as bread ingredient

(4% on flour weight)

- Specific volume + 16-18%
- Increase of the structural features; firmness

- Most mammals, including man, lack pancreatic alpha-galactosidase (alpha-Gal), which is necessary for the hydrolysis of these sugars.
- RFO can be fermented by gasproducing microorganisms present in the cecum and large intestine, which in turn can induce flatulence and other gastrointestinal disorders in sensitive individuals

the use of microorganisms expressing alpha-Gal is a promising solution to the elimination of NDO before they reach the large intestine

Leblanc et al., 2004

Pre-fermentation of milling by-products: applications

Maize Milling By-Products: From Food Wastes to Functional Ingredients Through Lactic Acid Bacteria Fermentation

🚊 Erica Pontonio:*, 🚊 Cinzia Dingeo:, 🚊 Marco Gobbetti² and 🚊 Carlo Giuseppe Rizzello:

¹Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy ²Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy

patent n. WO 2021/260543

	International Journal of Food Microbiology 313 (2020) 108384	
	Contents lists available at ScienceDirect	
	International Journal of Food Microbiology	MICROBIOLOGY
ELSEVIER	journal homepage: www.elsevier.com/locate/ijfoodmicro	Concernent Concernent

Brans from hull-less barley, emmer and pigmented wheat varieties: From byproducts to bread nutritional improvers using selected lactic acid bacteria and xylanase

Erica Pontonio^a, Cinzia Dingeo^a, Raffaella Di Cagno^{b,*}, Massimo Blandino^c, Marco Gobbetti^b, Carlo Giuseppe Rizzello^a

^a Department of Soll, Plant and Food Science, University of Bari Aldo Moro, 70126 Bart, Italy ^b Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy ^c Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy

Emmer – barley – pigmented wheat

Use of defatted wheat germ

Table 1

Proximate composition of the defatted wheat germ (DWG).

Chemical composition (g/100 g)	DWG
Moisture Protein (d.m.) ^a Fat (d.m.) Carbohydrates (d.m.) Total dietary fibers (d.m.) Salt (d.m.) Ash (d.m.)	$\begin{array}{c} 7.00 \pm 0.28 \\ 25.20 \pm 0.77 \\ 0.51 \pm 0.20 \\ 28.19 \pm 1.30 \\ 35.44 \pm 3.13 \\ 0.02 \pm 0.00 \\ 5.05 \pm 0.55 \end{array}$

Cell density of lactic acid bacteria (log10 cfu/g), pH, concentration of lactic and acetic acids, fermentation quotient (FQ), total titratable acidity (TTA), phytic acid, raffinose and total free amino acids (TFAA) content, of the fermented defatted wheat germ (fDWG) before (0 h) and after (24 h) fermentation at 30 °C with *L. plantarum* T6B10 and *F. sanfranciscensis* A2S5. Data refer to wet samples (DY 200).

	fDWG	
	0 h	24 h
Lactic acid bacteria (log10 cfu/g)	7.43 ± 0.48^{b}	$9.76\pm0.20^{\rm a}$
pH	6.22 ± 0.15^{a}	3.74 ± 0.31^{b}
TTA (ml NaOH)	2.70 ± 0.11^{b}	44.14 ± 2.25^{a}
Lactic acid (mmol/kg)	$0.27\pm0.02^{\rm b}$	167.7 ± 9.57^{a}
Acetic acid (mmol/kg)	1.04 ± 0.09^{b}	15.01 ± 1.15^{a}
FQ	$0.25\pm0.02^{\mathrm{b}}$	11.17 ± 2.50^{a}
TFAA (mg/kg)	1307.61 ± 118^{b}	4268.5 ± 301^{a}
Phytic acid (g/100g)	$1.43\pm0.24^{\rm a}$	0.77 ± 0.15^{b}
Raffinose (g/100g)	0.66 ± 0.18^a	0.06 ± 0.02^{b}

Antifungal organic acids and peptides purified from sourdough fermented wheat germ

	Rood Chemistry 127 (2011) 952-959	
	Contents lists available at ScienceDirect	Ē
6	Food Chemistry	CHEMISTRY
ELSEVIER	journal homepage: www.elsevier.com/locate/foodchem	100000

Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making

Carlo Giuseppe Rizzello, Angela Cassone, Rossana Coda, Marco Gobbetti * Dipartimento di Biologia e Chimica Agro-Forestale ed Ambientale, University of Bari, 70126 Bari, Raly

Source Protein
NCBI accession
FH4_ORYSJ,
Q8H8K7
BGL29_ORYSJ;
A3C053
HOX2_ORYSI,
Q84U86
HKT6_ORYSJ,
Q6H501
EXPB4_ORYSJ,;
Q94LR4

Synthesis of functional compounds during sourdough fermentation of wheat germ

Department of Environmental Biology, Sapienza University of Rome, Italy

iologu. Sanienza Univer

Biotransformation of brewer's spent grain: increased

Department of Environmental Biology, Sapienza University of Rome, Italy

Phenotype switching and gene expression

unibz

- All strains showed **organic acid** production divided into **two phases** in BSG (diauxic growth).
- **Expression of genes** related to selected substrates that strains consumed more intensely under BSG conditions during the two phases

microbial biotechnology

Research Article 🖞 🖸 Open Access 🛛 😨 🏟 🗐 🏵

How water-soluble saccharides drive the metabolism of lactic acid bacteria during fermentation of brewers' spent grain

Marta Acin-Albiac, Pasquale Filannino, Rossana Coda, Carlo Giuseppe Rizzello, Marco Gobbetti, Raffaella Di Cagno 🔀

Viscosity increase

RESEARCH

Open Ac

Brewers' spent grain as substrate for dextran biosynthesis by *Leuconostoc pseudomesenteroides* DSM20193 and *Weissella confusa* A16

Prabin Koirala¹, Ndegwa Henry Maina¹, Hanna Nihtilä¹, Kati Katina¹ and Rossana Coda^{1,2*}

Untreated spent Fermented spent

- BSG amount: ca. 33-37% of dough weigh
- Dextran content ca. 1.6% w/w \rightarrow 0.59% of dextran in bread (effective as hydrocolloid)

BSG bioprocessing: increase of the antioxidant activity

use of xylanase + lactic acid bacteria fermentation

Xylanase liberated 25% of the **phenolic compounds bound to lignocellulosic** material and, therefore, not available to exert their function. Whereas **LAB metabolized phenolic acids** and polymeric forms of **proanthocyanidins** into more active forms.

Bioactive peptides

LAB proteolytic system enabled the **release of small bioactive peptides** sequences encrypted in barley and maize native proteins, showing common features of antioxidant peptides.

Bioprocessed BSG for functional pasta and extruded snacks

HIGH FIBER

Improved **Protein Digestibility** and quality indices

Low glycaemic index compared to semolina pasta

s antioxidants

MDPI

Bioprocessed Brewers' Spent Grain Improves Nutritional and Antioxidant Properties of Pasta

Rosa Schettino ¹, Michela Verni ¹⁽⁰⁾, Marta Acin-Albiac ²⁽⁰⁾, Olimpia Vincentini ³⁽⁰⁾, Annika Krona ⁴, Antti Knaapila ⁵, Raffaella Di Cagno ², Marco Gobbetti ², Carlo Giuseppe Rizzello ^{6,*(0)} and Rossana Coda ^{5,7(0)}

Blend ingredients; total water 26%
Extrusion at 30/80/90/110/95 °C, 50 rpm
Microwave 12 g at 750 W for 45 s to expand

More homogeneous protein network Functional properties

Rich in phenolic compounds and bioactive peptides

Technological properties

Degraded arabinoxylan structure

 Protective effects of digested pasta towards induced oxidative stress in Caco-2 cells cultures

European project WASTEBAKE

 Biotechnological functionalization of bakery waste - (Call: EUROTRANSBIO)

Valle Fiorita Catering Srl (Italy) Koivulan Leipomo Oy (Finland) Senson (Finland) - Iceberg LLC (Russia)
 – University of Bari (Italy) - University of
 Helsinki (Finland) - ITMO University
 (Russia)

GABA enrichment

- GABA content 136 mg/kg
- Higher Free Amino Acids
- Higher In vitro Protein Digetibility
- Lower predicted Glycaemic Index
- Good technoløgical properties

Journal of Applied Microbiology

Biosynthesis of $\gamma\text{-}aminobutyric$ acid by lactic acid bacteria in surplus bread and its use in bread-making

Michela Verni 🔀 Anna Vekka, Mikko Immonen, Kati Katina, Carlo Giuseppe Rizzello, Rossana Coda,

First published: 23 October 2021 | https://doi.org/10.1111/jam.15332

ORIGINAL ARTICLE D Open Access

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi:10.1111/jam.15332

Accepted, unedited articles published online and citable. The final edited and typeset version of record will appear in the future.

Accepted Articles

Lactic acid bacteria and yeasts associated with *gowé* production from sorghum in Bénin

Image and cross section of common wheat flour bread (A) and bread produced with surplus bread slurry containing 30% of wheat bran and fermented with L. plantarum H64 (B)

ELSEVIER

Contents lists available at ScienceDirect

Food Control

CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL

journal homepage: www.elsevier.com/locate/foodcont

Antifungal effect of bioprocessed surplus bread as ingredient for
bread-making: Identification of active compounds and impact on shelf-lif

L. Nionelli^{a,1}, Y. Wang^a, E. Pontonio^b, M. Immonen^a, C.G. Rizzello^b, H.N. Maina^a, K. Katina^a, R. Coda^{a,c,*}

Sequence	Mass (Da)	Length	Net charge	Hydrophobic ratio (%)	NCBI Accession number (Protein)
NIQVDPSGQVQ	1183,5833	11	-1	27	P08453.1 (γ-gliadin)
EGEGVIVLLR	1083,6282	10	-1	50	B8AL97.1 (Globulin-like)
LTAASITAVCR	1161,6175	11	1	63	P01085.1 (a-amylase inhibitor)
DCCQQLADINNEWCR	1980,7927	15	-2	46	ABF93411.1 (a-amylase inhibitor)
DVAGGGGAQQCPVE					
ТК	1572,7193	16	-1	31	P33432.2 (Puroindoline-A)
					AQT26482.1 (a-amylase/ trypsin
DYVLQQTCGTFTPGSK	1800,8404	16	0	25	inhibitor)
SGNVGESGLIDLPGCPR	1726,8316	17	-1	29	
QQCCGELANIPQQCR	1860,8077	15	0	40	
QQCCQPLAQISEQAR	1815,8396	15	0	40	P0CZ09.1 (Avenin-like)

Yogurt-like (plant-based) beverages

Plant-based ice-cream

Gluten-, soy-, milk- and lactose- free,

LWT - Food Science and Technology 161 (2022) 113327

Design and characterization of a plant-based ice cream obtained from a cereal/legume yogurt-like

Erica Pontonio^a, Marco Montemurro^a, Cinzia Dingeo^{a, b}, Michele Rotolo^c, Domenico Centrone^b, Vito Emanuele Carofiglio^b, Carlo Giuseppe Rizzello^{d,*}

Alternative options for cereal by-products valorisation:

Substrate for the cultivation of starters

Next-generation soil-improvers

a FORK TO FARM approach?

- Supplement for OC and TN
- LAB as PGPM
- Acidification effect -
- Antimicrobial activity

Chemical and physicochemical properties of CTR, WBA and FWBA soils

Samples	рН _{н2О}	рН _{ксі}	EC µS m ⁻¹	0.C. %	TN %	P _{ava} mg kg ⁻¹
то	8.2 a	7.2	200 b	16.0 b	1.6 bc	45.5 ab
CTR	8.2 a	7.3	319 b	15.2 b	1.5 c	46.9 a
WBA	7.7 b	7.3	805 a	20.3 a	2.1 a	37.3 bc
bWBA	7.7 b	7.2	764 a	20.8 a	1.9 ab	36.1 c
HSD.test	***	ns	***	***	**	**

Mean biometric features of plants at the end of the trial

Samples	Average n. of leaves/plant	Treated/CTP leaves ratio	Average head escarole fresh weight (g)	Treated/CTP yield ratio
СТР	13 b	-	18.2 b	-
WBP	22 a	1.7	64.5 a	1.97
bWBP	19 ab	1.4	55.9 a	1.70
HSD.test	*	ns	***	ns

Article

Reuse of Wasted Bread as Soil Amendment: Bioprocessing, Effects on Alkaline Soil and Escarole (Cichorium endivia) Production

Claudio Cacace ¹, Carlo Giuseppe Rizzello ², Gennaro Brunetti ¹, Michela Verni ^{1,*} and Claudio Cocozza ¹

8 weeks

Frontiers | Frontiers in Sustainable Food Systems

PUBLISHED 24 November 2022 DOI 10.3389/fsufs.2022.1010890

OPEN ACCESS

Claudio Bellia, University of Catania, Italy

REVIEWED B Zina Flagella Università degli Studi di Foggia, Italy Miloš Radosavljević University of Novi Sad, Serbia

*CORRESPONDENC Michela Verni nichela.verni@uniba.i

Potential of native and bioprocessed brewers' spent grains as organic soil amendments

Claudio Cacace^{1†}, Claudio Cocozza^{1†}, Andreina Traversa¹, Rossana Coda^{2,3}, Carlo Giuseppe Rizzello⁴, Erica Pontonio¹, Francesco De Mastro¹, Gennaro Brunetti¹ and Michela Verni^{1*}

Bioplastic production (microbial synthesys of PHBV)

Why Hfx mediterranei? -

- PHA-producer
- Halophilic
 - No sterilization
 - **Green** Extraction _
- *Starch metabolism*
 - Salts supplementation
 - Purity
 - Composition

substrate for

Technological properties

Frontiers | Frontiers in Microbiology

TYPE Original Research PUBLISHED 21 September 2022 DOI 10.3389/fmicb.2022.1000962

Check for updates

OPEN ACCESS Yinglong Su

Steven Pratt The University of Queensland, Aus Manish Kumar, National Environmental Engine Research Institute (CSIR), India Sanjay Kumar Singh Patel, Konkuk University, South Kore

Haloferax mediterranei and arlo Giuseppe Ris

logiuseppe.rizzello@u This article was submitted to

seawater Marco Montemurro¹, Gaia Salvatori², Sara Alfano², Andrea Martinelli², Michela Verni¹, Erica Pontonio¹ Marianna Villano^{2,3} and Carlo Giuseppe Rizzello^{4*}

polyhydroxyalkanoates

Exploitation of wasted bread as

production through the use of

Sapienza University of Rome, Italy

carlogiuseppe.rizzello@uniroma1.it

University of Bari Aldo Moro

Erica Pontonio Michela Verni Marco Montemurro Giuseppe Perri Chiara De Marinis Andrea Torreggiani Angela Longo

University of Helsinki Rossana Coda Kati Katina

UNIVERSITY OF HELSINKI

Free University of Bozen Marco Gobbetti Raffaella di Cagno

